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A particle simulation code has been developed which is particularly well suited for the 
investigation of low-frequency plasma phenomena. The code is based on Darwin’s for- 
mulation of Maxwell’s equations in which the transverse displacement current is neglected. 
There is thus no radiation, but the self-consistent magnetic fields are retained. Use is made 
of the particle equation of motion to transform the Darwin field equations into a set that 
is stable under integration in time. An iteration procedure is developed for solving these 
equations at each time step. This scheme has been coded using finite-size particles and fast 
Fourier transform methods in both 1% and 24 dimensions. The codes have been checked 
by comparing the simulation results with the dispersion relations for Alfven, whistler, 
and magnetosonic waves. Good agreement was obtained. 

1. INTRODUCTION 

The use of computer simulation models to perform numerical experiments is a 
powerful tool in plasma physics. Numerical experiments are used together with 
theoretical analysis and laboratory experiments in the study of basic plasma pheno- 
mena. One type of model consists of the so-called particle-pushing simulation codes. In 
these codes the trajectories of a large number of charged particles are followed in time. 
The particles move under the intluence of their self-consistent fields as well as any 
external fields. Usually these codes are either purely electrostatic or fully electro- 
magnetic. In the electrostatic codes the only self-consistent fields present are those 
obtained from Poisson’s equation. These codes can be used to investigate those low- 
frequency phenomena where electrostatic effects are dominant [l-4]. However, they 
suffer the obvious limitation of neglecting the self-consistent magnetic fields, thereby 
excluding a whole range of interesting plasma problems. In the electromagnetic 
codes the full set of Maxwell’s equations is solved to obtain the self-consistent fields. 
Although they are very good for investigating problems involving radiation [5-81, 
these codes suffer from excessive bremsstrahlung (due to the highly particulate nature 
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of the model). Also the time step has to be small in order to resolve the high frequencies 
of the electromagnetic waves. Therefore an excessive number of time steps is needed 
to simulate low-frequency phenomena. The computer runs are then too long (and too 
expensive), and there is an unacceptable accumulation of errors. 

A model which incorporates the self-consistent magnetic fields and is appropriate 
for low frequencies is the Darwin model [9, lo]. In this model the transverse part of 
the displacement current is neglected in Ampere’s law. This is the only approximation 
made; the remaining Maxwell’s equations are used in their exact form. The Darwin 
formulation is correct to order (v/c)” and includes electrostatic and magnetostatic 
effects and electromagnetic induction, but neglects radiation. It is sometimes called a 
nonradiative or self-inductive model. Earlier applications of this formulation to par- 
ticle-pushing codes were restricted to one-dimensional cases [1 l] and made use of the 
conservation of the transverse canonical momentum [12, 131. Haber et al. [14] 
extended the approach to one-dimensional situations in which the canonical momen- 
tum was not strictly conserved. This code was used to study whistlers [15] and also 
instabilities in unmagnetized, anisotropic plasmas [16]. More recently, Denavit [17] 
developed a sophisticated code, still in one dimension, using the Darwin Lagrangian 
and incorporating quiet starts and charge-weighted particles. 

In the one-dimensional codes there is only one direction for wave propagation, and 
it is simple to separate all vector quantities into parallel and transverse components. 
It is also possible to displace the particle and field quantities in time so as to obtain 
perfect time centering. However, the methods used in [I I-14, 171 do not generalize 
to more than one dimension, since the canonical momentum is conserved only in the 
direction of ignorable spatial coordinates and in general there are an insufficient 
number of such coordinates. In this paper we present an alternate approach which 
appears to be similar to that developed by Nielson and Lewis [18]. The scheme has 
been coded in both one-and-two-halves dimensions (one position, three velocities) 
and in two-and-one-half dimensions (two positions, three velocities). The model 
uses Gaussian-shaped particles to represent the plasma. This results in the suppression 
of short-wavelength fluctuations. A fast Fourier transform algorithm is used to solve 
for the fields, thus allowing a very natural separation into components parallel and 
perpendicular to the direction of propagation. A straightforward integration in time of 
Darwin’s formulation of the electromagnetic equations leads to a numerical instability 
[14, 181, which in the one-dimensional models can be suppressed in different ways 
[12-14, 171. The instability is caused by the fact that the inductive fields which arise 
from the acceleration of particles strongly modify the acceleration. Here we present a 
scheme in which the time derivative in the field equations is eliminated by means of 
the equation of motion of the particles. The resulting equation for the transverse 
electric field is fairly complicated, but we have derived a successful iterative procedure 
for solving it. The iteration is in space, not time, and convergence is very rapid for 
uniform density plasmas. Even for strongly nonuniform plasmas the convergence is 
satisfactory. The one-dimensional code was used to study the absorption of ion cyclo- 
tron waves [19] and is also applicable to loss-cone studies in mirror machines and 
multimirror confinement schemes. The two-dimensional version is being used current- 
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ly to study AlfvCn waves in nonuniform plasmas. The results will appear elsewhere. 
The present paper concentrates on the mathematical formulation and numerical 
aspects of the magnetostatic scheme. 

2. THE MODEL 

It is well known that a vector quantity can be separated into two components; 
one is divergence free (transverse), the other is curl free (longitudinal). We separate 
the electromagnetic fields and the current density in this way and denote the resulting 
components by the subscripts T and L. Then the equations for the electromagnetic 
fields in Darwin’s approximation are written as 

V . EL = 47rp, (la) 

CV x BT = 4rrJT, (lb) 

CV x ET = -aB,/at. UC) 

Note in particular the absence of the term iYE@ in (1 b). This is the basic approxima- 
tion in this radiation-free formulation. The electromagnetic energy and momentum 
in this approximation are (Sn)-l J (EL2 + BT2) dr and (4rc)-l J (Er x BT) dr, respec- 
tively. The system of Eqs. (1) is supplemented by 

V x EL = 0, W 

V . BT = 0, (W 

4?r~L + aELIat = 0. (24 

Equations (2a) and (2b) follow from the definitions of longitudinal and transverse 
components. Equation (2~) is the longitudinal counterpart to (1 b) and is a restatement 
of conservation of charge, a constraint that clearly has to be satisfied. 

The longitudinal electric field EL is obtained from Eqs. (la) and (2a); the transverse 
magnetic field Br is obtained from (1 b) and (2b). There are no complications involved 
in these operations. The difficulty lies in the evaluation of the transverse electric 
field ET by means of (1~). A straightforward integration in time leads to a numerical 
instability. This instability is a well-known problem of the Darwin model. We discuss 
one possible method of obtaining ET in Section 3. 

The sources for EL and B.r are the charge density p and the transverse current density 
JT , respectively. The model described here uses finite-size Gaussian-shaped particles 
to represent the plasma. It has been shown that finite-size particles are very effective 
in reducing the anomalously high collision frequencies and suppressing the small- 
wavelength fluctuations which are inherent to particle codes [20, 211. The charge 
density is given by 

f(r) = 2 4if@ - c), (3) 
i 
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and the total current density by 

J(r) = c wif(r - ~1. 

The summations are performed over all particles. qi and vi are the charge and velocity 
of the ith particle, while f(r - rJ represents the spatial distribution of charge about the 
central point ri of the particle. For the 2+dimensional model r represents a pair of 
coordinates (x, JJ), while v represents the three components of the velocity (a,, u, , u,). 
The explicit form we use for f is a Gaussian of radius a, 

f(r - ri) = (2m~3-~ exp[-(x - Q/2a2 - (I’ - JJ~)~/~$]. (5) 
However, any other convenient form for fcould be used. 

In order to make the field calculations efficient, a spatial grid is introduced and 
particle positions ri are expressed in terms of the nearest grid point r, and the displace- 
ment from that grid point hi : 

ri = r, + hi . 

The sums indicated in (3) and (4) are then performed following a modified dipole 
expansion technique known as the subtracted dipole scheme (SUDS) [22]. In this 
scheme the charge and current densities are accumulated at each grid point using the 
dipole approximation, and the derivatives of the form factor are approximated by a 
centered difference over adjacent cells. The charge density thus has the form 

+ pD*(F $2 - 1) - pDq% n + l>l>- (6) 

The summation is over all points g = (m, n) in the two-dimensional grid, and 6 is 
the grid spacing. The monopole part of the expansion is 

PNGPW = c 4i (7) 
ieg 

and the dipole terms are given by 

PD”h, n) = c qi AXi 3 
ieg 

pD*b, n) = 1 qi bi , 
ieg 

(8) 

where kg indicates that particle i is centered in the gth cell. The current density J is 
described by equations of the same form as (6) to (8). Note that these equations are 
extensions to 2+ dimensions of the corresponding expressions in [22, 231. The Fourier 
transforms p(k) and f(k) can now be obtained by performing single two-dimensional 
transforms. Thus, 

i@) = expt-~2~2/W,L)-1 C exp(--ik * rg)lo~O&) + pD(dl, 
B 

(9) 
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where p&g) is the complete dipole contribution in Eq. (6), and L, and L, are the 
dimensions of the (x, JJ) grid. The term exp(-&P/2) is just the form factor of the finite- 
size Gaussian particle. The source for the magnetic field is the transverse part of the 
current density, and this is easily obtained in Fourier space via the operation 

jT(k) = i(k) - k(k l j)/P. WV 

The Fourier components EL(k) and &(k) are computed from the sources using the 
equations 

ik . e,(k) = 4$(k), (1 la) 

ik x EL(k) = 0, (1 lb) 

ick x &(k) = 47&k), (114 

ik . P,(k) = 0. (114 

The longitudinal electric field and the transverse magnetic field in real space are 
obtained by means of an inverse Fourier transform. These fields plus the transverse 
component of E (to be discussed in Section 3) and any externally applied fields are 
used to compute the force on a particle, 

F(q) = qi 1 f(r’ - r,)p(r’) + vi x B(r’)/c] dr’ 

= qi 1 exp(--k2aa/2)[E(k) + vi x &k)/c] exp(ik * ri) dk. (12) 

In the simulation model the fields, and hence the right side of (12), are calculated only 
at the grid points. To increase the accuracy of the force calculation, a dipole expansion 
of rt around the nearest r, is used, in which derivatives of the fields are again approxi- 
mated by central differences. 

After the force F(r,) is obtained, the particle positions and velocities are advanced 
in time by means of the equations of motion 

dvJdt = F(r,)/m, , 

dri/dt = vi , 

(134 

UW 

using the leapfrog method. Equation (13b) is fully time centered with the velocities 
defined at the full time steps and the positions defined at the half time steps. We 
would like to have (13a) also be time centered. The longitudinal part of the electric 
field is centered since it depends only on the positions. But the transverse fields involve 
both the positions and velocities (see Eq. (1 lc) and Section 3); we compute them at the 
same instant as the velocities. To achieve the desired time centering, we use a first- 
order Taylor expansion to advance s(t) and ET(t) half a time step ahead.This requires 
that values of the fields be saved from the previous time step. The arrangement ofthe 
variables in time is shown in Fig. 1. At the beginning of a loop, ri,,+l/2, vi,* , E:ld, 
and gid are known. The procedure is then the following. (i) ri is advanced by At/2 
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FIG. 1. A diagram illustrating the time advancement of field and particle quantities in the 
magnetostatic code. 

using Vi,n , and J and S (to be defined in Section 3) are accumulated on the grid points. 
(ii) ri is advanced by the remaining dt/2, and p is accumulated on the grid points. (iii) 
The fields EF”, BFW, and EL are computed in Fourier space and then transformed 
back to real space. The transverse fields are advanced to t,+r/, using the Taylor expan- 
sion. (iv) The force Fi,n+llz is computed and the velocities are advanced by dt. We are 
now back at the beginning, ready to start the next loop. 

3. THE COMPUTATION OF ET 

As already mentioned, the straightforward integration in time of Eq. (1) is numer- 
ically unstable. In order to eliminate this instability, we have to eliminate the time 
derivative from Eq. (1~). This is done as follows. First take the curl of (lc) to obtain 

V2ET = (47r/c2)@J/at), . 

Using the definition of J in Eq. (4), we have 

aJ/at = C qi[(aVi/at)f(r - ri) - Vi(Vi . V)f(r - rj)]. 
I 

We then use the equation of motion to rewrite (15) as 

aJ/at = C qi [(qi/& f(r - ri) I f(r’ - ri){E(r’) + Vi X B(r’)/c} dr’ 

1 vi(vi * V) f(r - ri)]. 

We now take the transverse part of (16) and substitute into (14) to obtain 

V2ET - (4.rrlc2) [T (qi2/mj)f(r - ri) s f(r’ - r3 JW dr’lT 

= (47dc2) [C ](qi2/m3f(r - ri> 1 W - ri) 

* [vi x B&] dr’ - qiVi(Vi + V)f(r - ri)/], . 

(14) 

(15) 

(16) 

(172 
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The right-hand side consists of known quantities and is therefore a source term which 
we call --S,(r). The first term represents a particle flux crossed with the magnetic 
field, while the second one is the divergence of the current transfer tensor. Neither of 
these terms normally appears in particle codes, but their computation is straightfor- 
ward, if tedious. The source term S,(r) is accumulated on the grid points from the 
velocities of the particles. The same SUDS techniques which were used to obtain 
p(r) and J(r) are used to obtain S,(r). The second term on the left-hand side of (17) 
represents a convolution of the electric field with the number density. Equation (17) 
is similar to the equation for ET obtained by Nielson and Lewis [18]. These authors, 
however, solve the equation in real space. Reference [14] contains a discussion of this 
general type of equation. 

Since we wish to solve for ET in Fourier space, we take the transform of (17). The 
result is 

k%(k) + (c&/n,& exp(--k2a2/2) 11 i&(x) -f- (&w) Ei(x)] 
x 

. f?(k - X) exp[-(k - ~)zu2/21/T 

= s,(k). (18) 

Here E&c) and iii(k) are the transformed electron and ion number densities, while n, 
is the average electron density. Equation (18) completes the system of equations needed 
for the magnetostatic model. It can be written in matrix form as 

[Ll[ETI = Lslv 

and so it has a formal solution 

lETI = [Ll-l[sl* 

However, it would be prohibitive to invert [L] at every time step for the dimensions 
usually used in simulation codes. Another possibility is to cut off the higher k modes, 
thereby reducing the size of the matrix. However, an inspection of (18) shows that the 
off-diagonal elements of [L] are of order E(k)/n,, relative to the diagonal terms. There- 
fore, when the density perturbation is small (i.e., a rather uniform plasma), it is 
possible to use an iterative procedure. Rewrite (18) keeping the K = 0 terms on the 
left-hand side and transpose the others to the right side. We obtain 

[k2 f (&/c2)(1 f me/mi) exP(--k2u2/2)] ET(k) 

= S,(k) - (&&oC2) eXp(--k2U2/2) 1 1 [fit+) + (%/mi) &(x)1 
X#O 

* e(k - x) exp[-(k - x)~~~/Z]/~. (19) 

To begin the iterative procedure, we neglect all the terms on the right side of (19) 
except ST . This yields an initial estimate for & , 

f&“(k) = [k2 + (w$Jc’)(~ f WZe/t?Ii) eXp(--k2U2/2)]-1 ST(k). 
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We then substitute this result for E-ro back into the right side of (19) and solve to obtain 
a new estimate of f?r . This iteration can be repeated until the new &(k) differs from 
the old one by some small amount. For thermal plasmas only two or three iterations 
were needed to reduce the error to less than 0.1 %. 

This iterative procedure for computing ET turns out, however, not to be restricted 
to uniform or nearly uniform plasmas. For a plasma with a sinusoidal density pertur- 
bation. as large as 60 % (thus producing a factor of four variation between the maxi- 
mum and minimum density), the number of iterations required for 0.1 % convergence 
increased to only four or five. The present procedure does break down when the maxi- 
mum density exceeds twice the average density. A modification of the iterative method 
which permits such cases to be treated is discussed in Section 5. 

4. TESTS OF THE CODE 

The magnetostatic model described above contains a great wealth of plasma pheno- 
mena. In order to test the simulation codes based on this model, we have chosen to 
study in some detail wave propagation in a magnetized, thermal plasma. The theory 
of such waves is well known [24], and so comparison of the simulation results with 
theory provides a good check of the whole procedure. 

As mentioned previously, the present scheme has been coded in both 1Q and 24 
dimensions. In the two-dimensional code one can observe propagation at all angles 8 
between the wavevector k and the uniform external field B, in a single run (subject 
only to the constraints imposed by the discrete grid). In the one-dimensional code 
only one value of 0 can be observed at a time, but naturally the execution time and 
storage requirements are much smaller for the I-D code. The simplest case to consider 
is 13 = 0, namely propagation parallel to the external field. The dispersion relations 
(in magnetostatic approximation) for transverse waves in a cold plasma are then [12] 

The upper sign yields the electron cyclotron or whistler waves, while the lower sign 
gives the ion cyclotron waves. The former waves are right circularly polarized, while 
the latter are left circularly polarized. In the limit w << wCi , the two branches come 
together to form the linearly polarized AlfvCn waves. 

Runs were made with both codes to check the dispersion relation (20) and the 
polarization properties of the waves. Since the results were quite similar, we shall 
mainly discuss the two-dimensional case and only briefly mention the one-dimensional 
results. A grid of 32 x 128 cells was used with the external field oriented parallel 
to the longer dimension. A total of 4096 each electrons and ions were distributed 
uniformly in space across this grid with random initial velocities. (In the 1-D case 
5120 each electrons and ions were similarly distributed across a system 512 cells long.) 
The remaining parameters used in the simulation were: ion to electron mass ratio 
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mi/me = 4, Ti = T, , A,/6 = 1, C/C;,, g c(kTelm,)-‘~2 = 5, w,,/w,, = 1.2, and 
particle size a/6 = 1. In a run of 1000 time steps (t = 200~;:) the energy conservation 
was better than 1 “/b. (Because of the larger number of particles per cell, energy 
conservation in the 1-D run was an order of magnitude better.) Both cyclotron modes 
were observed, and they possessed the correct polarization properties. In Fig. 2 the 

O.tl- 

0.6 - 

$ - 
3 

04- 

0.2 - 

FIG. 2. Dispersion relation for electron and ion cyclotron waves, theory and simulation. Solid 
lines are for T = 0 (Eq. (20)); dashed lines are for finite T (Eq. (21)). 

simulation results are compared with the predictions of Eq. (20) modified to include 
the effect of finite particle size [21] (solid lines). For small values of k;\,, there is 
excellent agreement for both electron and ion cyclotron branches. At larger values of 
k&the electron cyclotron frequencies fall systematically below the cold plasma predic- 
tion. This discrepancy is due to thermal effects, as can be seen by solving the finite- 
temperature dispersion relation [25] 

c2k2 = 
” =F “03 

II Ow2,, z ( 21/2kv;h 21J2kve th 

Here Z is the complex plasma dispersion function [26]. The solutions for Re w are 
shown in Fig. 2 as dashed lines. There is now excellent agreement for all the electron 
cyclotron frequencies. For khD 2 0.2 the ion cyclotron waves are strongly damped, 
and it is difficult to determine frequencies from the simulation results. 

Next we consider propagation perpendicular to the external field. In the magneto- 
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FIG. 3. Dispersion relation for upper and lower hybrid waves, theory and simulation. Solid lines 
include correction for finite particle size; dashed line does not. 
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FIG. 4. Dispersion relation for waves propagating at an angle tan-l 2 to the external magnetic 
field, theory and simulation. 
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static approximation the ordinary wave does not exist [12]. For the extraordinary 
wave the cold plasma dispersion relation is 

W’b”,,! + w$>(w;e + w;i + w,,w,i - w’) 
C2kA2 = (w” - wfJ(w2 - wg - (w’,, + w;i)(w2 - WciWce) . (22) 

Solution of Eq. (22) yields two branches. The lower-frequency branch is the magneto- 
sonic or lower hybrid wave, while the higher-frequency branch is the upper hybrid 
wave. Figure 3 gives the comparison between theory and the simulation results. The 
solid curves include the effect of finite particle size and match the computational 
results very well. The dashed curve, which does not include this effect, indicates the 
size of this correction. The finite size is clearly apparent in the simulation results. 

For propagation at oblique angles to the magnetic field the magnetostatic dispersion 
relation yields three branches. A representative case is shown in Fig. 4. Once again, 
the simulation agrees very well with theory. 

The evident success of the particle codes in simulating such a diversity of plasma 
waves and the degree to which energy is conserved give.us considerable confidence 
in the present magnetostatic scheme and its implementation. 

5. NONUNIFORM DENSITIES 

A variety of interesting plasma phenomena occur when the density is nonuniform. 
These include, for instance, cases of wave propagation along or against density 
gradients and pinch configurations. It would thus be useful to relax the restriction of 
moderate density perturbations from the iteration procedure of Section 3. 

One possibility is to compute [L]-l. This will give the correct solution but is pro- 
hibitively expensive. Another possibility is suggested by Eq. (18) itself. When reduced 
to symbolic form, the iteration can be written as 

[k2 + CgJc’] E,” = s, + [(w”,, - f&)/c2] ETO, 
where the superscripts stand for new and old. The term GE, corresponds to the 
Z(k = 0) term, the average density. The difference wie - c$, corresponds to the terms 
r?(k) with k # 0, i.e., the actual density minus its average value. From (23) we obtain 
ETN as 

For small k this scheme is unstable if /(w”,, - &$J& 1 > 1, or w”,, > 20:,. This can 
occur if the density fluctuations are large enough so that the peak density is greater 
than twice the average. To make the iteration stable again, the coefficient of ET0 
in (24) has to be made smaller than one. This can be done simply by adding to both 
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sides of (23) the term CO::, corresponding to the maximum value of the density. 
The new scheme is then 

It is easy to monitor the peak value of the density during a run and change the value of 
CO:: whenever the instability threshold is approached. 

This very simple modification was tried successfully with the one-dimensional 
code in a test run with a pinch. It was also used in an experiment where ion cyclotron 
waves of large amplitude were launched into the system at both ends. These waves 
generated peaks in the density which grew in time and travelled toward the center of 
the system. The modified iteration scheme described here handled this nonuniform 
density accurately. Further description and results of this experiment are given in [ 191. 

6. CONCLUSIONS 

We have developed a magnetostatic particle-pushing simulation code which uses 
Darwin’s formulation of the electromagnetic field equations. This formulation is 
radiation free, but it retains the low-frequency self-consistent magnetic fields. It is 
thus appropriate for investigating plasma phenomena occurring in the range normally 
treated by magnetohydrodynamics. It provides insight into the effects of particle 
motion (finite-Larmor-radius effects) on results obtained with classical MHD. We 
have used this formulation in codes with 1% dimensions and with 24 dimensions. We 
have studied propagation, dispersion, and polarization of Alfvtn, whistler, and magne- 
tosonic waves. These codes are also being used to study AlfvCn waves propagating in a 
nonuniform plasma and to simulate magnetic mirror machines and multimirror 
machines. We are just beginning to investigate the wealth of problems to which these 
codes are applicable. 
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